Partitioning the Boolean Lattice into Chains of Large Minimum Size

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partitioning the Boolean Lattice into Chains of Large Minimum Size

Let 2[n] denote the Boolean lattice of order n, that is, the poset of subsets of {1, . . . , n} ordered by inclusion. Recall that 2[n] may be partitioned into what we call the canonical symmetric chain decomposition (due to de Bruijn, Tengbergen, and Kruyswijk), or CSCD. Motivated by a question of Füredi, we show that there exists a function d(n) ∼ 1 2 √ n such that for any n ≥ 0, 2[n] may be p...

متن کامل

Partitioning the Boolean lattice into a minimal number of chains of relatively uniform size

Let 2[n] denote the Boolean lattice of order n, that is, the poset of subsets of {1, . . . , n} ordered by inclusion. Extending our previous work on a question of Füredi, we show that for any c > 1, there exist functions e(n) ∼ √n/2 and f(n) ∼ c √ n log n and an integer N (depending only on c) such that for all n > N , there is a chain decomposition of the Boolean lattice 2[n] into ( n ⌊n/2⌋ ) ...

متن کامل

Decompositions of the Boolean Lattice into Rank-symmetric Chains

The Boolean lattice 2[n] is the power set of [n] ordered by inclusion. A chain c0 ⊂ · · · ⊂ ck in 2[n] is rank-symmetric, if |ci|+ |ck−i| = n for i = 0, . . . , k; and it is symmetric, if |ci| = (n− k)/2 + i. We prove that there exist a bijection p : [n] → [n] and a partial ordering < on [n](>n/2) satisfying the following properties: • ⊂ is an extension of < on [n](>n/2); • if C ⊂ [n](>n/2) is ...

متن کامل

Long Symmetric Chains in the Boolean Lattice

Let [n] = {1, 2, . . . , n} be a set with n elements, and let 2[n] denote the poset of all subsets of [n] ordered by inclusion. In other words, 2[n] is the Boolean lattice of order n or the n-dimensional hypercube. It is easy (for example using a symmetric chain decomposition [1, Theorem 3.1.1]) to find n disjoint skipless (saturated) symmetric chains of length n − 2, that is n disjoint chains ...

متن کامل

Partitioning Boolean lattices into antichains

Let f(n) be the smallest integer t such that a poset obtained from a Boolean lattice with n atoms by deleting both the largest and the smallest elements can be partitioned into t antichains of the same size except for possibly one antichain of a smaller size. In this paper, it is shown that f(n)6 b n=log n. This is an improvement of the best previously known upper bound for f(n). c © 2002 Elsev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2002

ISSN: 0097-3165

DOI: 10.1006/jcta.2001.3197